
An Improved Algorithm for Extraction of

Fuzzy Logic Rules from Measurement Data

G. N. Reddy, Mohammad Mahmudul Islam, and Samin Sobhani
Drayer Department of Electrical Engineering, Lamar University

Beaumont, TX, USA, gnreddy@lamar.edu

Abstract – This paper presents an improved algorithm to extract
the fuzzy logic rules from measurement data, to be used in turn
in a Fuzzy Logic Expert System FLES. Fuzzy logic rule
extraction from measurement data is a complex task, this
algorithm simplifies this task to a considerable degree. In a
conventional algorithm, each input variable has its own set of
input membership functions. In the algorithm we have
developed, all input variables are normalized to the same min-
max-ranges and have the same input membership functions
IMFs. This means you just have only one set of membership-
functions for all of the input variables, simplifying IMF
definitions. Further simplification in this single IMF-definition
is achieved by choosing suitable min-max values so that MF-
vertex values are round numbers for given number of IMFs. We
have applied the same normalization technique to simplify the
membership function definitions for the output variables. To
illustrate the functionality and accuracy of the algorithm three
case studies are used: one, measurement of battery state of
charge SOC using FLES-based impedance-interrogation
method; two, classical balance of inverted pendulum IP
problem; and third, KB generated by some other study for the
same IP-problem is compared with that generated by our
algorithm. For implementing the three case studies, we
developed three C++ programs for rule-extraction; and three
other C++ programs for corresponding FLES-predictors. The
FLES-predictor estimates outputs for a given set of inputs. If
the extracted rule-set is correct, for a given measured input the
estimated value must match with the corresponding measured
value. The number of measurement pairs used in the case
studies one, two, and three were: 100, 70 and 70. In case studies
one and two the rms-error between the measured outputs and
fuzzy-predicted outputs was within 3.3. In case study three, for
a given input while KBs were slightly different, the rms-error
between the output values predicted by our FLES-predictor the
Motorola generated KB were near the same with less than 2.1
percent.

Key Words: Fuzzy Logic Expert Systems FLES;
Knowledge Base KB; Fuzzy rule-set; Measurement/Numeric
data; inverted pendulum IP; battery SOC; FLES-Predictor.

I. INTRODUCTION

The most difficult task to develop a fuzzy logic expert
system, for any given application, is in extracting the fuzzy
logic rules from its measured data [1, 2, 3, 4]. Overall rule
generation consists of two tools: a rule generation tool and a
rule test tool. In this paper, section 2 describes rule generation
tool vs the rule test tool; section 3 describes fuzzy rule-

extraction/generation-tool; section 4 describes FLES-predictor-
tool; section 5 includes test results for the rule extraction
process in case study 1: state of charge SOC measurement using
FLES; and section 6 includes conclusions.

Fig. 1. FLES Fuzzy rule extraction tool

II. FLES RULE GENERATION TOOL Vs

FLES-PREDICTOR-TOOL

The rule extraction algorithm consists of two tools: one for the
fuzzy rule extraction from measurement data and the other for
FLES-predictor tool to test the extracted rule-set. The block
schematic diagram of for fuzzy rule-extraction tool is shown in
Fig. 1. Input data to the rule extraction tool include: Measured
input/output data from an application; desired number of input
membership functions IMFs for the input variables; desired
number of output membership functions OMFs for the output
variables; the normalization-range for the input variables & the
normalization range for the output variables.

1.1 The advantages of normalizing input/output variables

The advantages in normalizing input-variables, irrespective of
their absolute dynamic ranges, allows us to use just one-IMF-
set for all of the input variables. Similarly just one OMF-set for
all of the output variables. One can even use just one MF-set for
input as well as output variables. The other advantage are: the
individual vertices of the IMF-set can be selected such that the
vertices are round integer numbers that are easy to understand.
One of the application that we have used to verify if the
extracted rule set is correct or not was FLES-based
measurement of battery state-of-charge SOC. The application
has three inputs in1, in2, in3, and one output out1. For a 9-volt
battery, the dynamic range of these three input variables were:
8.25-9.59; 8.26-9.62; and 8.26-9.60. With 11 IMFs for in1, the
vertices of the IMFs will be: 8.25 + (9.59 – 8.25) * n * / 10, n =
0,..9. The IMF-vertices will be: 8.25; 8.384; .., 9.456, 9.59. The

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

mailto:gnreddy@lamar.edu

span between any two vertices is 0.134. If in1 is normalized 0-
100; then the vertices will be 0, 10, 20, .., 90, 100. The span
between any two vertices is 10. As one can see, the normalized
second set is much easier to deal with than the un-normalized
1st-set. The same thing will apply for the output variables as
well.

Fig. 2 shows the FLES-predictor-tool in test or recall or
predictive mode or rule-verification mode. Here the outputs
generated by the rule-extractor will become the inputs to the
predictor. Inputs to the FLES-predictor include three input data
files: infile_1.txt, infile_2.txt, and infile_3.txt. The first file
infile_1.txt contains: absolute dynamic ranges of each
input/output variable; the number of IMFs and OMFs;
normalized range for IMFs & normalized range for OMFs; span
between any two membership functions or span between any
two IMF-vertices; the number of rules. The second input file
infile_2.txt contains: the rule set. The third file infile_3.txt
contains test inputs. Using the data in infile_1.txt, infile_2.txt,
and infile_3.txt the FLES-predictor estimates the output
variable value.

Fig. 2. FLES Predictor

III. FUZZY RULE GENERATION ALGORITHM

The rule-set is generated using the following steps [1-4]:
Step 1: Find dynamic ranges Ri for each variable;
Step 2: Find normalized membership functions MFns;
Step 3: Find input data expressed in normalized form:

normalized i/o-pairs;
Step 4: Fuzzify inputs;
Step 5: List fuzzy rules using fuzzified inputs;
Step 6: Find degree of confidence Di for each rule/Resolve the

problem of Conflicting Rules;
Step 7: Find the final unique rule-set.

Step 1: Find dynamic ranges Ri for each variable.
Assume we have three-input (x1, x2, x3) and one-output y1
measurement data with m-samples represented as:

s1: x11, x21, x31: y1; // measurement sample 1
s2: x12, x22, x33: y2; // measurement sample 2
…
sm: x1m, x2m, x3m: ym; // measurement sample m

Assuming each variable vary from xmin to xmax; from data
search find dynamic ranges Ri for each variable:

Dynamic range R1 for x1 is: x1min to x1max;
Dynamic range R2 for x2 is: x2min to x2max;
Dynamic range R3 for x3 is: x3min to x3max;

Step 2: Find normalized membership functions IMFns &

OMFns
Let the specified number of IMFs is Nimf and the specified
range for the IMFs is Rimf. The vertices Vini of the triangular-
IMFs are given by:

imf

ini imf

imf

R
V = *n; n =0,..,(N -1)

N -1

 (1)

For input IMF-range of 100 and 11 IMFs; the vertices Vin0, Vin1,

Vin2,..,Vin9, Vin10 are: 0, 10, 20,.., 90,100.

Similarly for the output, let the specified number of OMFs is
Nomf and the specified range for the OMFs is Romf. The vertices
Vouti of the singleton-OMFs are given by:

omf

outi omf

omf

R
V = *n; n =0,..,(N -1)

N -1

 (2)

For output OMF-range of 100 and 11 OMFs; the vertices Vout0,

Vout1, Vout2,..,Vout9, Vout10 are: 0, 10, 20,.., 90,100.

Step 3: Find input data expressed in normalized form:

normalized i/o-pairs.
Normalized input measurements xn are given by:

min min

n imf imf

max min

(x -x) (x -x)
x = R = R

Δx (x - x)
 (3)

where, x is the un-normalized input data value; xmin, xmax are the

minimum and maximum of x; x is the variation-span of x. For
x1 = 8.47; x1min = 8.25; x1max = 9.60; Rimf = 100; the value
of x1n = (8.47 – 8.25) * 100 / (9.60 – 8.25) = 22/1.35 = 16.30.

Step 4: Fuzzify inputs
Express each normalized input value xn as function of the IMFs.
For any xn, find between which two-adjacent vertices this value
falls-in; then express it as a percentage of those two IMFs; then
retain the high-percentage IMF-expression.

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

For x1n = 39; with 5-IMFs with their vertices at (Vo1:Vo5): 0,
25, 50, 75, 100. The x1n is fuzzified as: the value falls between
25-50 or between IMF1 and IMF2; the value 39 is then
expressed as 11/25 of IMF1 or 14/25 of IMF2. In this algorithm
we keep 14/25 of IMF2. This is repeated for all thee input
variables x1, x2, and x3. In rule extraction algorithms
membership function values 11/25 and 14/25 of x1 are
represented as m1(x1) and m2(x1). Here m represents the
membership-function-value. In the above example m1(x1) is
IMF1-value of x1 and m2(x1) is IMF2-value of x1.

Step 5: List fuzzy rules using fuzzified inputs.
Assuming we have 3-input x1, x2, x3 and one output y
application. Let the activated-MFs by x1, x2, x3, and y are:
IMF2, IMF3, IMF4, and OMF5. Also let the corresponding
membership function values are: m2(x1), m3(x2), m4(x3), and
m5(y). The rule corresponding to this is written as:

If (x1 is imf2) and (x2 is imf3) and (x3 is imf4) then y is omf5.

The number of rules generated will be equal to the number of

measurements. For each measurement there is a rule.

Step 6: Find degree of confidence di for each rule / Resolve

the problem of Conflicting Rules.

When rules are generated using fuzzified inputs, there will be

lots of conflicting rules. Rules considered conflicting if we have

the same if-part but with different then-part.

Conflicting rules:

R20: If (x1 is imf2) and (x2 is imf3) and (x3 is imf4) then y is omf5.

R24: If (x1 is imf2) and (x2 is imf3) and (x3 is imf4) then y is omf6.

One way to solve this problem is to find the degree of

confidence di for each of the conflicting rules then retain the

rule with the highest value for di. The degree of confidence of a

rule is given by the product of the membership function values

as follows:

In general if the rule is defined as:

R10: If (x1 is A) and (x2 is B) and (x3 is C) then (y is D); Then

the degree of confidence of the R10 is given By:

 10 in out a 1 b 2 c 3 dd =d *d ={m (x) m (x) m (x)}*m (y) (4)

Where d10 is the degree of confidence of rule 10; din is the

degree of IMFs (product of input membership function values);

dout is the degree of OMF (output membership function value);

ma(x1) membership function value of x1; mb(x2) membership

function value of x2; mc(x3) membership function value of x3.

With ma = 14/25; mb = 19/25; mc = 20/25; md = 8/10:

d10 = din * dout = (14/25) * (19/25) * (20/25) * (8/10) = 0.34 *

0.80 = 0.27

Step 7: Find the final unique rule-set.

Final rule set is a selected list of rules:

Set-A: Select all unique-rules with highest degree of

confidence.

Set-B: Pick one rule from each of the conflicting groups with

highest degree of confidence.

Combination of the above two rule-sets will become knowledge

base of the application’s fuzzy logic expert system. This

concludes rule generation from measurement data. The next

section is to verify if the generated rule set is in fact is the

correct rule set representing the application from which the

measurement data was obtained. It is called the FLES-

Predictor.

IV. FLES-PREDICTOR

The function of this fuzzy logic expert system predictor is

to take some test input from the application and estimate

corresponding output of the application using an FLES. Overall

configuration of an FLES is shown in Fig. 3 [5-7]. It has three

elements: Knowledge Base KB, Inference Engine IE, and User

interface UI: KB being a systems or an application’s knowledge

in the form of a rule-set; UI providing real-time i/o signal

interface to the application; and IE estimates/infers/computes

the output parameter values using the system description in the

KB and the inputs from the UI. Numeric-inputs from an

application are fuzzified using input membership functions

IMFs; and conversely outputs from FLES are defuzzified to

generate numeric-outputs to the application using output

membership functions OMFs. All of the elements required for

developing an FLES for the application are generated by the

Rule Generation Tool – knowledge base KB; IMFs; OMFs.

Fig. 3. Overall architecture of an FLES-predictor.

Execution cycle of the Inference Engine:

The Inference Engine senses the input and computes or

estimates the output. It accomplishes this using the following

sequence of steps:

IE1: Fuzzify inputs

Find input variables as a percentage of the input membership

functions IMFs.

IE2: Find activated rule-set Ra

Find all the rules whose if-part is true, i.e., input variable value

requirements match with current-input values.

IE3: Find output

Find output using centroid defuzzification formula as follows

[3, 4]:

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

K

out_ii=1 in_i

K

i=1 in_i

d V
y =

d

 (5)

where, K is the number of rules activated; din_i are the input

degrees of confidence for each rule (which are the product of

the corresponding IMFs); Vout_i are the central-vertices of the

output member ship functions OMFs of the activated rules.

Example: Application with three inputs x1, x2 and one out y.

Activated rules:

R1: if (x1 is A) and (x2 is B) then y is C;

R2: if (x1 is D) and (x2 is E) then y is F;

Let membership function values:

mA = 0.8; mB = 0.6; mC = 0.7;

mD = 0.5; mE = 0.3; mF = 0.2;

Let membership function vertices values:

Vout_1 or Vout_C = 20;

Vout_2 or Vout_F = 24;

Here K = 2

Then:

din_1 = mA * mB = 0.8 * 0.6 = 0.48

din_2 = mD * mE = 0.5 * 0.3 = 0.15

y = (din_1 * Vout_1) + (din_2 * Vout_2) / (din_1 + din_2)

y = (0.48 * 20) + (0.15 * 24) / (0.48 + 0.15) = 20.95

We have used this type of FLES-predictor with two

applications to verify the generated rule-sets. One, FLES-

based State-of-Charge SOC determination; second FLES-

based control of an Inverted Pendulum IP problem [3]. Both of

them have worked correctly. In this paper we include a short

description of the SOC-determination method in the following

section; for more detailed description you may refer to [3].

More details on FLES-battery determination one can refer to

[7].

V. TEST RESULTS

As described above, one of the application we have used for

verifying the rule generation tool is “FLES-based Battery

SOC-Determination” [7]. It is an impedance-interrogation

method to determine battery SOC. Here you find pulse

response of the battery at known SOC-levels. We did 101

measurements at SOC levels of 0, 1, 2, .., 100 using controlled

charge/discharge systems. From the pulse response three key

features were extracted: x1, x2, x3: min, max, and average. It

has one output variable which is battery SOC. So, this

application is a 3-input and 1-output application. When rule

generation tool is used it generated 12-rule knowledge base

KB. We have used this rule-set to develop a FLES-predictor as

described in section 3. We ran this FLES-predictor 100-times

with inputs with known outputs to see if the predicted values

are the same as the measured output values. Eight-IMFs-FLES

sytem resulted in best results. The measured values and the

predicted values, with extracted rule-set as its KB, are shown

in Fig. 4.

Fig. 4. FLES-Based Battery SOC-Determination.

From the 100-pairs of measured and predicted values, the

overall rms-error is estimated as:

N 2

rms i ii=1

1
E = M -P

N
 (6)

Here, Erms is the average rms-error; Mi are the measured

values; Pi are the FLES-predicted values, and N is the number

of measurement pairs. Statistics of the results are:

Erms: rms-error: 3.33

StDev: Standard deviation: 3.31

Average error: -0.48.

Fuzzy Rule Extraction Tool: Output Simulation Trace

Table A shows the entire output simulation trace of the fuzzy

logic-extraction-tool. The output simulation trace of the rule

generation tool is listed in Table A. It is implemented in 8-

phases. In phase-I, raw measurement data is read into the tool.

In phase-II, input variable values are extracted from the raw

data. In phase-III, dynamic ranges for the input and the output

variables are extracted: in1min, in1max, in2min, in2max,

in3min, and in3max. In phase IV, normalized input variable

values are computed. In phase V, IMFs and OMF are listed. In

phase-VI, for each measurement value the fuzzified values are

displayed (absolute values are expressed as function of input

membership functions). It also listed as the preliminary-rule

set. In phase-VII, the degree of each rule is displayed. In

phase-IX, the final and unique fuzzy logic rule set is

displayed.

Fuzzy-Predictor-Tool: Output Simulation Trace

Table B shows the entire output simulation trace of the fuzzy-

predictor-tool. It has three input data files: measurement data

file; normalization data file; and the knowledge base (fuzy-

rule-set) file. In phase-I, measurement values are displayed.

In phase-II, IMF-set is displayed. In phase-III, the normalized

values are displayed. In phase-IV, the measurements are

fuzzified. In phase-V, measured (M) and predicted (P) or

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

estimated values are displayed. RMS-error is computed from

the M-P pairs using (5).

VI. CONCLUSIONS

In this paper an improved fuzzy rule extraction algorithm is

presented: 1. It simplifies membership function definitions; 2.

It reduces number membership functions needed; and 3. It

enables in simplified custom vertex-definitions for the IMFs

and OMFs. The rule generation tool & and the fles-predictor-

tool set is tested with three case studies with rms-error less

than 3.3. While the rms-error is low, the tool-set require

further tuning to reduce rms-error even-further.

REFERENCES

[1] Li-Xin Wang and Jerry Mendel. Generating Fuzzy Rules from Numerical
Data, with Applications, USC-SIPI-169, University of Southern
California, Los Angeles, 1991.

[2] Nikos Pelekis, Babis Theodoulikis, Ioannis Kopanakis, and Yannis
Theodoridis. Fuzzy Miner: Extracting Fuzzy Rules from Numerical
Patterns, International Journal of Data Warehousing and Mining
(IJDWM), ISSN: 1548-3924, 2005.

[3] Mohammad Islam, MS-Thesis: “Extraction of Fuzzy Knowledge Base
from Numerical Data”, Drayer Department of Electrical Engineering,
Lamar University, Beaumont, Texas, USA, Fall 2015.

[4] G. N. Reddy, Mohammad Mahmudul Islam, and Samin Sobhani. An e-
Learning Tool to Extract Rule Set from Measurement Data, Proc. of the
3rd World Congress on Computer Applications and Information Systems
WCCAIS-2015, Dubai-UAE, January 9-11, 2016.

[5] G. N. Reddy, Vishnudev Vasanthan, Gurpreet Singh, and Sreelatha Maila.
A Modular Fuzzy Logic Expert System for Autonomous Mobile Robots,
International Workshop on Artificial Intelligence IWAI-2014, Turkey;
August 22-23, 2014: In Proceedings, Scientific Co-operations
International Workshops on Electrical and Computer Engineering
Subfields: P133-136; ISBN: 978-605-86637-4-9.

[6] G. N. Reddy, Gurpreet Singh, and Vishnudev Vasanthan (2013),
Embedding code for a Mobile Fuzzy Logic Controller, Journal of
Information Technology Review, Volume 4, Number 4, Pages. 151-156,
November, 2013; Print ISSN: 0976-3511 / Online ISSN: 0976-292.

[7] Singh, Gurpreet. 2014. Modern Embedded – Controlled Fuzzy Logic
Expert System to Estimate Battery State of Charge (SOC), MS-Thesis,
Drayer Department of Electrical Engineering, Lamar University, Spring
2014.

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

NNGT Int. J. on Information Security, Vol.5, February, 2016Full Paper

DOI : 05.IJIS.2016.1.4
N&N Global Technology 2016©

